

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 1 of 11 www.netacad.com

Lab - Explore the Evolution of Password Methods (Instructor
Version)
Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only.

Answers: 6.5.10 Lab - Explore the Evolution of Password Methods

Objectives

Part 1: Launch the DEVASC VM

Part 2: Explore Python Code Storing Passwords in Plain Text

Part 3: Explore Python Code Storing Passwords Using a Hash

Background / Scenario

In this lab, you will create an application that stores a username and password in plaintext in a database
using python code. You will then test the server to ensure that not only were the credentials stored correctly,
but that a user can use them to login. You will then perform the same actions, but with a hashed password so
that the credentials cannot be read. It is important to securely store credentials and other data to prevent
different servers and systems from being compromised.

Required Resources

 1 PC with operating system of your choice

 Virtual Box or VMWare

 DEVASC Virtual Machine

Instructions

Part 1: Launch the DEVASC VM

If you have not already completed the Lab - Install the Virtual Machine Lab Environment, do so now. If you
have already completed that lab, launch the DEVASC VM now.

Part 2: Demonstrate the Application

Instructor Note: You can use the script at the end of the lab to demonstrate the application.

Your instructor may demonstrate the Password Plain Text and Hashing Application. However, you will create
this script step by step in this lab.

The application first stores a username and password in plaintext in a web service database. It then validates
that the credentials were stored and work properly. The second method, hashing the password, also stores
them and tests them in the web service database.

Part 3: Install Packages and Create a Web Service

In this Part, you will use Flask to create a simple web service that requires user authentication. User
authentication requires a database which will be satisfied using SQLite.

https://itexamanswers.net/6-5-10-lab-explore-the-evolution-of-password-methods-answers.html

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 2 of 11 www.netacad.com

Step 1: Open the security directory in VS Code and install Python packages.

a. Open VS code. Then click File > Open Folder... and navigate to the devnet-src/security directory. Click
OK.

b. In the EXPLORER panel, click the password-evolution.py placeholder file to open it.

c. Open a terminal in VS Code. Click Terminal > New Terminal.

d. Use the following commands to install the packages needed in this lab. These packages may already be
installed on your VM. If so, you will get a Requirement already satisfied message.

devasc@labvm:~/labs/devnet-src/security$ pip3 install pyotp

Defaulting to user installation because normal site-packages is not writeable

Collecting pyotp

 Using cached pyotp-2.3.0-py2.py3-none-any.whl (10 kB)

Installing collected packages: pyotp

Successfully installed pyotp-2.3.0

devasc@labvm:~/labs/devnet-src/security$ pip3 install flask

Defaulting to user installation because normal site-packages is not writeable

Collecting flask

 Using cached Flask-1.1.2-py2.py3-none-any.whl (94 kB)

Requirement already satisfied: click>=5.1 in /home/devasc/.local/lib/python3.8/site-

packages (from flask) (7.1.2)

Requirement already satisfied: Jinja2>=2.10.1 in /usr/lib/python3/dist-packages (from

flask) (2.10.1)

Requirement already satisfied: itsdangerous>=0.24 in

/home/devasc/.local/lib/python3.8/site-packages (from flask) (1.1.0)

Requirement already satisfied: Werkzeug>=0.15 in

/home/devasc/.local/lib/python3.8/site-packages (from flask) (1.0.1)

Installing collected packages: flask

Successfully installed flask-1.1.2

devasc@labvm:~/labs/devnet-src/security$

Step 2: Import libraries.

In the password-evolution.py file, add the following code. Notice the command, db_name = 'test.db'. This
is an SQL database (sqlite3) that stores the usernames and passwords that you will be creating.

import pyotp #generates one-time passwords

import sqlite3 #database for username/passwords

import hashlib #secure hashes and message digests

import uuid #for creating universally unique identifiers

from flask import Flask, request

app = Flask(__name__) #Be sure to use two underscores before and after "name"

db_name = 'test.db'

Step 3: Create a local web service.

a. Next, add the following Flask code into the file to create the first phrase of web content at the root path.
When the user goes to URL (root directory), the output of the return statement will be displayed in the
browser.

@app.route('/')

def index():

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 3 of 11 www.netacad.com

 return 'Welcome to the hands-on lab for an evolution of password

systems!'

b. Add the following code to the file to create a local web service on port 5000 with a self-signed TLS
certificate. The parameter ssl_context=’adhoc’ allows you to run an application over HTTPS without
having to use certificates or when using a self-signed certificate. Be sure to use two underscores before
and after name and main.

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000, ssl_context='adhoc')

c. Save and run the password-evolution.py file. The nohup (no hangup) command keeps the process
running even after exiting the shell or terminal. The & makes the command run in the background.

devasc@labvm:~/labs/devnet-src/security$ nohup python3 password-evolution.py

&

[1] 26329

devasc@labvm:~/labs/devnet-src/security$ nohup: ignoring input and appending

output to 'nohup.out'

devasc@labvm:~/labs/devnet-src/security$

d. Press Enter to get a new command prompt.

e. Your Flask server is now running. In VS Code in the /security folder, you should see the nohup.out text
file created by Flask. Click the file to read its output.

f. Verify that the web service has started. Be sure to use HTTPS and not HTTP. The -k option allows curl to
perform "insecure" SSL connections and transfers. Without the -k option, you will receive an error
message, "SSL certificate problem: self-signed certificate". The command will display the message from
the return command you coded in your script.

devasc@labvm:~/labs/devnet-src/security$ curl -k https://0.0.0.0:5000/

Welcome to the hands-on lab for an evolution of password

systems!devasc@labvm:~/labs/devnet-src/security$

g. Press Enter to get a command prompt one a new line.

h. Before continuing, terminate the script. Use the following command to stop it:

devasc@labvm:~/labs/devnet-src/security$ pkill -f password-evolution.py

devasc@labvm:~/labs/devnet-src/security$

Part 4: Explore Python Code Storing Passwords in Plain Text

When passwords were first used, they were simply stored in a database as plaintext. When the user entered
their credentials, the system looked up the password to see if it matched. The system was very easy to
implement, but also very insecure. In this Part, you will modify the password-evolution.py python file to
allow it to store user identity in the test.db database. You will then create a user and perform an
authentication against these credentials. Finally, you will examine the test.db database to verify they were
stored in plaintext.

Step 1: Remove the server configuration.

Remove the following lines from the password-evolution.py python file. You will add this code back later.

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000, ssl_context='adhoc')

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 4 of 11 www.netacad.com

Step 2: Configure the server to store credentials.

a. Append (copy) the following Flask code to configure the server to store a username and password for a
user in plaintext. Using the HTTP POST method, this code allows a user to create ("signup") a new
username and password that will be stored in the test.db SQL database file. Later when the user enters in
a username and password, this code will return the message "signup success".

Plain Text

@app.route('/signup/v1', methods=['POST'])

def signup_v1():

 conn = sqlite3.connect(db_name)

 c = conn.cursor()

 c.execute('''CREATE TABLE IF NOT EXISTS USER_PLAIN

 (USERNAME TEXT PRIMARY KEY NOT NULL,

 PASSWORD TEXT NOT NULL);''')

 conn.commit()

 try:

 c.execute("INSERT INTO USER_PLAIN (USERNAME,PASSWORD) "

 "VALUES ('{0}', '{1}')".format(request.form['username'],

request.form['password']))

 conn.commit()

 except sqlite3.IntegrityError:

 return "username has been registered."

 print('username: ', request.form['username'], ' password: ',

request.form['password'])

 return "signup success"

Note: Be careful of word wrap in the above code. Be sure to indent properly or the code may not work
correctly.

b. Append (copy) the following Flask code to your password-evolution.py file to verify the new account
credentials.

def verify_plain(username, password):

 conn = sqlite3.connect('test.db')

 c = conn.cursor()

 query = "SELECT PASSWORD FROM USER_PLAIN WHERE USERNAME =

'{0}'".format(username)

 c.execute(query)

 records = c.fetchone()

 conn.close()

 if not records:

 return False

 return records[0] == password

c. Append (copy) the following Flask code to your password-evolution.py file. This code is used during
each login attempt to read the parameters from an HTTP request and verify the account. If the login is
successful, the message "login success" will be returned, otherwise the user will see the message
"Invalid username/password".

@app.route('/login/v1', methods=['GET', 'POST'])

def login_v1():

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 5 of 11 www.netacad.com

 error = None

 if request.method == 'POST':

 if verify_plain(request.form['username'], request.form['password']):

 error = 'login success'

 else:

 error = 'Invalid username/password'

 else:

 error = 'Invalid Method'

 return error

Step 3: Run the server and test it.

a. Add back the server configuration code you deleted earlier.

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000, ssl_context='adhoc')

b. Save and run the script to start the updated web service.

devasc@labvm:~/labs/devnet-src/security$ nohup python3 password-evolution.py

&

[1] 27826

devasc@labvm:~/labs/devnet-src/security$ nohup: ignoring input and appending output to

'nohup.out'

c. Use the following curl commands to create (signup) two user accounts, alice and bob, and send a POST
to the web service. Each command includes the username, password, and the signup function being
called that stores this information including the password as plaintext. You should see the "signup
success" message from the return command that you included in the previous step.

Note: After each command, press Enter to get a command prompt on a new line.

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=alice'

-F 'password=myalicepassword' 'https://0.0.0.0:5000/signup/v1'

signup successdevasc@labvm:~/labs/devnet-src/security$

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=bob' -F

'password=passwordforbob' 'https://0.0.0.0:5000/signup/v1'

signup successdevasc@labvm:~/labs/devnet-src/security$

devasc@labvm:~/labs/devnet-src/security$

Step 4: Verify your new users can login.

a. Use the following curl commands to verify that both users can login with their passwords that are stored in
plaintext.

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=alice'

-F 'password=myalicepassword' 'https://0.0.0.0:5000/login/v1'

login successdevasc@labvm:~/labs/devnet-src/security$

devasc@labvm:~/labs/devnet-src/security$

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=bob' -F

'password=passwordforbob' 'https://0.0.0.0:5000/login/v1'

login successdevasc@labvm:~/labs/devnet-src/security$

b. Terminate the server.

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 6 of 11 www.netacad.com

login successdevasc@labvm:~/labs/devnet-src/security$ pkill -f password-

evolution.py

[1]+ Terminated nohup python3 password-evolution.py

devasc@labvm:~/labs/devnet-src/security$

Step 5: Verify the contents of test.db.

You may have noticed that SQLite created a test.db file in your /security folder. You can cat this file and see
the username and passwords for alice and bob. However, in this step you will use an application for viewing
SQLite database files.

a. Open the DB Browser for SQLite application

o Select the menu icon on the lower-left of the VM.

o Select: Applications > All

o Select :DB Browser for SQLite

b. After the DB Browser for SQLite is running, open the test.db file:

o Select: File > Open database…

o Navigate to the labs/devnet-src/security directory and select test.db.

o Click Open.

c. In the Database Structure tab, notice the USER_PLAIN table that coincides with the code you created
earlier.

d. Expand the table to see the two fields: USERNAME and PASSWORD.

e. Select the Browse Data tab.

The Table: USER_PLAIN is already selected. Here you can see usernames bob and alice along with
their passwords in plaintext.

f. Close the DB Browser for SQLite application.

Part 5: Password Hashing in Python

Instead of storing passwords in plaintext, you can hash it when it is created. When the password is hashed, it is
converted into an unreadable collection of characters. This prevents anyone from converting it back to its correct,
plaintext version. Even if the database is stolen it cannot be used because the hash is not known. You will now
modify the password-evolution.py file to create a web API that can accept a web request and save a new user's
password in a hashed format.

Step 1: Remove the server configuration.

a. Remove the following two lines from the password-evolution.py file. These lines will be appended again
later.

if __name__ == '__main__':

app.run(host='0.0.0.0', port=5000, ssl_context='adhoc')

Step 2: Configure the server to store credentials.

a. Add the following code to the bottom of the file to enable the server to hash the password using SHA256
hashing method. Notice that this code is similar to the code you included previously. This code allows a
user to create ("signup") a new username and password that will be stored in the test.db SQL database
file. The difference is that the passwords will be stored as hash values instead of being in plaintext. This
routine uses sha256 but does not salt the hash. You will see the implications of using a hash without salt
when you view the test.db database file.

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 7 of 11 www.netacad.com

Password Hashing

@app.route('/signup/v2', methods=['GET', 'POST'])

def signup_v2():

 conn = sqlite3.connect(db_name)

 c = conn.cursor()

 c.execute('''CREATE TABLE IF NOT EXISTS USER_HASH

 (USERNAME TEXT PRIMARY KEY NOT NULL,

 HASH TEXT NOT NULL);''')

 conn.commit()

 try:

 hash_value =

hashlib.sha256(request.form['password'].encode()).hexdigest()

 c.execute("INSERT INTO USER_HASH (USERNAME, HASH) "

 "VALUES ('{0}', '{1}')".format(request.form['username'],

hash_value))

 conn.commit()

 except sqlite3.IntegrityError:

 return "username has been registered."

 print('username: ', request.form['username'], ' password: ',

request.form['password'], ' hash: ', hash_value)

 return "signup success"

b. Append (copy) the following code to your password-evolution.py file to verify that the password has
been stored only in hashed format. The code defines the function verify_hash which compares the
username and the password in hash format. When the comparison is true, the password has been stored
only in its hash format.

def verify_hash(username, password):

 conn = sqlite3.connect(db_name)

 c = conn.cursor()

 query = "SELECT HASH FROM USER_HASH WHERE USERNAME =

'{0}'".format(username)

 c.execute(query)

 records = c.fetchone()

 conn.close()

 if not records:

 return False

 return records[0] == hashlib.sha256(password.encode()).hexdigest()

c. Append (copy) the following code to your password-evolution.py file. The following code reads the
parameters from an HTTP POST request and verifies that the user has provided the correct password
during login.

@app.route('/login/v2', methods=['GET', 'POST'])

def login_v2():

 error = None

 if request.method == 'POST':

 if verify_hash(request.form['username'], request.form['password']):

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 8 of 11 www.netacad.com

 error = 'login success'

 else:

 error = 'Invalid username/password'

 else:

 error = 'Invalid Method'

 return error

Step 3: Run the server and test it.

a. Add back the server configuration code you deleted earlier.

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000, ssl_context='adhoc')

b. Save and then run the script to start the updated web service.

devasc@labvm:~/labs/devnet-src/security$ nohup python3 password-evolution.py

&

[1] 28411

devasc@labvm:~/labs/devnet-src/security$ nohup: ignoring input and appending output to

'nohup.out'

c. Use the following curl commands to create three new user accounts with a hashed password. Notice that
two of the users, rick and allan, are using the same password.

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=rick' -

F 'password=samepassword' 'https://0.0.0.0:5000/signup/v2'

signup successdevasc@labvm:~/labs/devnet-src/security$

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=allan'

-F 'password=samepassword' 'https://0.0.0.0:5000/signup/v2'

signup successdevasc@labvm:~/labs/devnet-src/security$

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=dave' -

F 'password=differentpassword' 'https://0.0.0.0:5000/signup/v2'

signup successdevasc@labvm:~/labs/devnet-src/security$

d. Use curl commands to verify the login of all three users with their hash-stored passwords. The user allan
is entered in twice, the first time with the wrong password. Notice the "Invalid username/password" that
coincides with the code for this function that you added in a previous step.

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=rick' -

F 'password=samepassword' 'https://0.0.0.0:5000/login/v2'

login successdevasc@labvm:~/labs/devnet-src/security$

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=allan'

-F 'password=wrongpassword' 'https://0.0.0.0:5000/login/v2'

Invalid username/passworddevasc@labvm:~/labs/devnet-src/security$

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=allan'

-F 'password=samepassword' 'https://0.0.0.0:5000/login/v2'

login successdevasc@labvm:~/labs/devnet-src/security$

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 9 of 11 www.netacad.com

devasc@labvm:~/labs/devnet-src/security$ curl -k -X POST -F 'username=dave' -

F 'password=differentpassword' 'https://0.0.0.0:5000/login/v2'

login successdevasc@labvm:~/labs/devnet-src/security$

This confirms that the hashed password is safely stored, and the passwords of users are protected
should they become compromised.

e. Terminate the server.

devasc@labvm:~/labs/devnet-src/security$ pkill -f password-evolution.py

[1]+ Terminated nohup python3 password-evolution.py

devasc@labvm:~/labs/devnet-src/security$

Step 4: Verify the contents of test.db.

a. Open the DB Browser for SQLite application.

b. Open the test.db file.

c. Select the tab, Database Structure.

You will notice two structures that coincide with the code you included earlier: USER_PLAIN and USER
HASH.

d. Select the Browse Data tab.

e. The Table: USER_HASH should already be selected. You will now see the usernames rick, allan, and
dave along with their hashed passwords. (You may need to adjust the table cells.) Notice that rick and
allan have the same hashed passwords. This is because they had the same password and the hash
function did not include a salt to make their hash unique. Salting the hash is the process of adding
random data to a hash. To guarantee the uniqueness of the passwords, increase their complexity, and
prevent password attacks even when the inputs are the same, a salt should be added to the input of a
hash function.

Part 6: Review the Final Program

The following is the complete script you created in this lab.

import pyotp

import sqlite3

import hashlib

import uuid

from flask import Flask, request

app = Flask(__name__)

db_name = 'test.db'

@app.route('/')

def index():

 return 'Welcome to the hands-on lab for an evolution of password

systems!'

Plain Text

@app.route('/signup/v1', methods=['POST'])

def signup_v1():

 conn = sqlite3.connect(db_name)

 c = conn.cursor()

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 10 of 11 www.netacad.com

 c.execute('''CREATE TABLE IF NOT EXISTS USER_PLAIN

 (USERNAME TEXT PRIMARY KEY NOT NULL,

 PASSWORD TEXT NOT NULL);''')

 conn.commit()

 try:

 c.execute("INSERT INTO USER_PLAIN (USERNAME,PASSWORD) "

 "VALUES ('{0}', '{1}')".format(request.form['username'],

request.form['password']))

 conn.commit()

 except sqlite3.IntegrityError:

 return "username has been registered."

 print('username: ', request.form['username'], ' password: ',

request.form['password'])

 return "signup success"

def verify_plain(username, password):

 conn = sqlite3.connect('test.db')

 c = conn.cursor()

 query = "SELECT PASSWORD FROM USER_PLAIN WHERE USERNAME =

'{0}'".format(username)

 c.execute(query)

 records = c.fetchone()

 conn.close()

 if not records:

 return False

 return records[0] == password

@app.route('/login/v1', methods=['GET', 'POST'])

def login_v1():

 error = None

 if request.method == 'POST':

 if verify_plain(request.form['username'], request.form['password']):

 error = 'login success'

 else:

 error = 'Invalid username/password'

 else:

 error = 'Invalid Method'

 return error

Password Hashing

@app.route('/signup/v2', methods=['GET', 'POST'])

def signup_v2():

 conn = sqlite3.connect(db_name)

 c = conn.cursor()

 c.execute('''CREATE TABLE IF NOT EXISTS USER_HASH

 (USERNAME TEXT PRIMARY KEY NOT NULL,

 HASH TEXT NOT NULL);''')

Lab - Explore the Evolution of Password Methods

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 11 of 11 www.netacad.com

 conn.commit()

 try:

 hash_value =

hashlib.sha256(request.form['password'].encode()).hexdigest()

 c.execute("INSERT INTO USER_HASH (USERNAME, HASH) "

 "VALUES ('{0}', '{1}')".format(request.form['username'],

hash_value))

 conn.commit()

 except sqlite3.IntegrityError:

 return "username has been registered."

 print('username: ', request.form['username'], ' password: ',

request.form['password'], ' hash: ', hash_value)

 return "signup success"

def verify_hash(username, password):

 conn = sqlite3.connect(db_name)

 c = conn.cursor()

 query = "SELECT HASH FROM USER_HASH WHERE USERNAME =

'{0}'".format(username)

 c.execute(query)

 records = c.fetchone()

 conn.close()

 if not records:

 return False

 return records[0] == hashlib.sha256(password.encode()).hexdigest()

@app.route('/login/v2', methods=['GET', 'POST'])

def login_v2():

 error = None

 if request.method == 'POST':

 if verify_hash(request.form['username'], request.form['password']):

 error = 'login success'

 else:

 error = 'Invalid username/password'

 else:

 error = 'Invalid Method'

 return error

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000, ssl_context='adhoc')
End of document

